10大最有可能撼动物理学未来的实验
文章来源:BALAB | 作者:编辑部 | 发布时间:2017-03-28 | 2701 次浏览 | 分享到:

美国《连线》杂志网站近日报道指出,希格斯玻色子的发现标志着现在的粒子物理学已经终结。接下来的几年内,物理实验将集中在厘清暗物质、中微子和希格斯粒子的属性等之上。以下十大实验获得的数据和结论或许会开启一个全新的物理学时代。


发现希格斯粒子:开启物理学新时代

2012年7月4日,欧洲核子研究中心(CERN)的科学家们宣布,他们发现了一种新粒子,其行为方式和标准模型中的希格斯粒子相似,疑似“上帝粒子”。2013年3月14日,CERN发布公告称,对更多数据的分析显示,该中心2012年宣布发现的新粒子“看起来越来越像”希格斯玻色子,计算结果“强有力地表明它就是希格斯玻色子”。


希格斯玻色子被认为是物质的质量之源,有“上帝粒子”之称,它是粒子物理学标准模型“缺失的一环”。自20世纪60年代发展起来的物理学标准模型,是一套描述强作用力、弱作用力及电磁力这三种基本力及组成所有物质的基本粒子的理论,其依赖于希格斯玻色子的存在。


物理学家们认为,希格斯粒子的发现将有助于他们在未来收获更重大的理论,其中包括能解决困扰标准模型问题的理论。但也有人认为,希格斯玻色子的发现,让物理学置身于更令人困惑的境地。据媒体报道,2013年11月初,英国著名物理学家斯蒂芬·霍金在伦敦科学博物馆举行的对撞机展上表示,“上帝粒子”的发现令他失望,如果没有发现这种粒子,物理学研究将变得更有趣。


或许,这听起来有些匪夷所思,但其实,有些物理学家希望甚至期盼希格斯粒子最终被证明与他们预测的并不一样,至少,希格斯粒子的属性与标准模型预测的迥然不同,这样,希格斯粒子将成为科学家们创建新模型的“见证人”。但结果表明,希格斯粒子的质量几乎与标准模型预测的一样。另外,科学家们曾经希望会发现其他新奇粒子存在的证据,指向其他理论,比如,目前流行的超对称理论。这一理论假定,所有已知的亚原子粒子(电子、夸克和质子等),都存在着一个质量更大的“孪生兄弟”,但结果却是一场空欢喜。


发现希格斯粒子反倒让我们更加失望了,那么,我们该如何摆脱这种困境呢?科学家们的回答是:获得更多的数据。在接下来的几年内,他们将专注于以下十大实验,希望其能回答与暗物质、中微子和希格斯粒子的属性等有关问题,为我们勾勒出未来物理学的大致轮廓。


ATLAS和CMS升级:调查希格斯粒子和暗物质的关系

3.jpg


超环面仪器(ATLAS)与紧凑渺子线圈(CMS)是通用型的粒子侦测器,也是LHC的两大关键实验。ATLAS的研究人员、芝加哥大学的粒子物理学家戴维·米勒认为,这两大探测器在发现希格斯玻色子的过程中发挥了重要作用。目前,工程师们正在紧锣密鼓地对其进行升级,预计到2015年重新启动。


实际上,ATLAS和CMS根本无法看见希格斯粒子,它们看见的是希格斯粒子衰变成的夸克、反夸克或者两个光子等。科学家们现在试图通过对已有数据进行分析,厘清希格斯粒子衰变成不同粒子所需的时间,以进一步确定希格斯玻色子的属性。同时,他们或许也能发现,希格斯粒子衰变成了这两台探测器没有发现的其他粒子。美国加州理工学院的粒子物理学家玛利亚·斯皮罗普鲁表示:“希格斯粒子或许会变成某些真正奇怪的东西,比如暗物质粒子等。”


天文观测结果告诉我们,暗物质拥有质量,而希格斯粒子会赋予其他粒子质量,因此,希格斯粒子与暗物质之间很可能有关,LHC提供的数据能告诉我们它们之间的关联有多强。如果科学家发现这种关联,将会打开一个全新的研究领域。


NOVA和T2K:确定中微子的属性

轻如尘、快似光,神出鬼没,能够轻易穿越各种物体,还可以不时变身—中微子无疑是标准模型里描述的基本粒子世界里的“世外高人”;此外,它们或许还背负着有关宇宙大爆炸的惊世之谜,因此,中微子也被称为宇宙的秘密信使,所以,任何与它有关的线索都可谓价值连城。


中微子它们很小,几乎没有质量,而且也很少同其他亚原子粒子“交往”,或许比我们所认为的还要奇特。目前,物理学家们正试图确定它们的某些属性,从而让一些悬而未决的问题盖棺定论。美国阿尔贡国家实验室的物理学家莫里·古德曼说:“这些问题都有答案,或许在下一轮实验中,我们就可以获得这些答案。”


这些实验包括美国费米国家实验室的NuMI离轴中微子实验(NOVA)和日本领导的T2K中微子国际合作组。


NOVA是北美地区最大、最先进的中微子探测实验计划,主要研究中微子的性质,尤其是它们的质量等信息,以及它们是否在宇宙大爆炸时期中微子与反物质以同等数量出现后介入了物质与反物质不对称机制中。


据科学家们目前所知,电子中微子、μ中微子和τ中微子这三类中微子的质量微乎其微,至少不到电子质量的百亿分之一,但我们并不知道具体是多少以及孰最轻孰最重。


在NOVA实验中,费米实验室会朝800公里外的位于明尼苏达灰河(Ash River)的中微子探测器发射中微子束,在不到三毫秒的时间内,生成世界上最强大的中微子束。


在日本的T2K实验(T2K是Tokai-to-Kamioka的缩写,即从东海到神冈的中微子实验)中,中微子束“旅行”的距离为295公里。当这些中微子穿过地球时,三种类型的中微子之间会发生“震荡”(即一种中微子转换为另一种中微子)。通过比较射出点的中微子和遥远的探测器探测到的中微子之间的区别,NOVA和T2K将能非常精确地确定中微子的属性。


T2K已经工作几年,NOVA据信会在2014年开始收集数据并继续运行6年。科学家们希望这两大实验能助力他们揭开笼罩在中微子头上的神秘面纱。



直接探测暗物质


暗物质究竟是什么呢?科学家们仍然毫无头绪。有人说,暗物质是一些大质量弱相互作用粒子(WIMP),影响了星系和星系簇的形状;也有人认为,暗物质只是一个幻想,源于我们对重力的错误理解;还有人表示,暗物质可能是宇宙中庞大的黑暗部分,等着我们去探索。


虽然暗物质占据了宇宙80%的质能组成,但迄今为止,我们从来没有发现暗物质粒子的行踪。不过,物理学家们坚信,不管暗物质是“何方神圣”,都逃不出他们的“火眼金睛”。


探索暗物质的方法有多种,比如使用间接和直接探测,间接探测暗物质的方法主要是依据暗物质粒子的特点,如果大质量弱相互作用粒子与自身的反粒子发生碰撞,就会发生湮灭,该过程可释放出伽玛光子,目前科学家发现在银河系中央附近天区存在与暗物质粒子行为有关的特殊“光束”,能量在130GeV左右。直接探测暗物质的实验室几乎都处于地下深处,这样可以屏蔽宇宙背景噪声的干扰。


位于美国南达科他州的大型地下氙气(LUX)暗物质探测器是目前全球最先进的暗物质探测设备之一,其位于地下1.6公里的地方,核心装置是一个1.8米高的钛容器,内部充满了液态氙气,并冷却到零下101摄氏度,如果大质量弱相互作用粒子与氙原子作用,探测器就能发现其信号。


2013年10月30日,LUX的科学家宣布了其首次对暗物质研究结果,结果没有解决问题,反而使暗物质更加神秘。在此前不久,国际空间站阿尔法磁谱仪(AMS)也进行了暗物质探索实验,结果同样差强人意。科学家认为,当前的探测设备可能距离暗物质粒子所需的级别还有一段距离。